Home
Fractals
Tutorials
Books
Archive
My blog
My LinkedIn Profile

BOOKS i'm reading

Napoleon Hill Keys to Success: The 17 Principles of Personal Achievement, Napoleon Hill, ISBN: 978-0452272811
The 4-Hour Workweek: Escape 9-5, Live Anywhere, and Join the New Rich (Expanded and Updated), Timothy Ferriss, ISBN: 978-0307465351
The Fountainhead, Ayn Rand, ISBN: 0452273331

/*
 * Module ID: prime.cpp
 *
 * Author   : Olivier Langlois <olivier@olivierlanglois.net>
 * Date     : October 09, 1997
 *
 *                       The First 1,000 Primes
 *                        (the 1,000th is 7919)
 *  For more information on primes see http://www.utm.edu/research/primes
 *
 * Note     : Have to add more comments in the code
 *
 * Revision :
 *
 * 001        02-Feb-2010 - Daniel Quadros
 *            Fix a bug in the C implementation of the function mulmod()
 */

#include "prime.h"
#include "diagnose.h"
#include <math.h>     /* For sqrt() */

unsigned primeTab[] =
{      2,      3,      5,      7,     11,    13,    17,    19,    23,    29,
      31,     37,     41,     43,     47,    53,    59,    61,    67,    71,
      73,     79,     83,     89,     97,   101,   103,   107,   109,   113,
     127,    131,    137,    139,    149,   151,   157,   163,   167,   173,
     179,    181,    191,    193,    197,   199,   211,   223,   227,   229,
     233,    239,    241,    251,    257,   263,   269,   271,   277,   281,
     283,    293,    307,    311,    313,   317,   331,   337,   347,   349,
     353,    359,    367,    373,    379,   383,   389,   397,   401,   409,
     419,    421,    431,    433,    439,   443,   449,   457,   461,   463,
     467,    479,    487,    491,    499,   503,   509,   521,   523,   541,
     547,    557,    563,    569,    571,   577,   587,   593,   599,   601,
     607,    613,    617,    619,    631,   641,   643,   647,   653,   659,
     661,    673,    677,    683,    691,   701,   709,   719,   727,   733,
     739,    743,    751,    757,    761,   769,   773,   787,   797,   809,
     811,    821,    823,    827,    829,   839,   853,   857,   859,   863,
     877,    881,    883,    887,    907,   911,   919,   929,   937,   941,
     947,    953,    967,    971,    977,   983,   991,   997,  1009,  1013,
    1019,   1021,   1031,   1033,   1039,  1049,  1051,  1061,  1063,  1069,
    1087,   1091,   1093,   1097,   1103,  1109,  1117,  1123,  1129,  1151,
    1153,   1163,   1171,   1181,   1187,  1193,  1201,  1213,  1217,  1223,
    1229,   1231,   1237,   1249,   1259,  1277,  1279,  1283,  1289,  1291,
    1297,   1301,   1303,   1307,   1319,  1321,  1327,  1361,  1367,  1373,
    1381,   1399,   1409,   1423,   1427,  1429,  1433,  1439,  1447,  1451,
    1453,   1459,   1471,   1481,   1483,  1487,  1489,  1493,  1499,  1511,
    1523,   1531,   1543,   1549,   1553,  1559,  1567,  1571,  1579,  1583,
    1597,   1601,   1607,   1609,   1613,  1619,  1621,  1627,  1637,  1657,
    1663,   1667,   1669,   1693,   1697,  1699,  1709,  1721,  1723,  1733,
    1741,   1747,   1753,   1759,   1777,  1783,  1787,  1789,  1801,  1811,
    1823,   1831,   1847,   1861,   1867,  1871,  1873,  1877,  1879,  1889,
    1901,   1907,   1913,   1931,   1933,  1949,  1951,  1973,  1979,  1987,
    1993,   1997,   1999,   2003,   2011,  2017,  2027,  2029,  2039,  2053,
    2063,   2069,   2081,   2083,   2087,  2089,  2099,  2111,  2113,  2129,
    2131,   2137,   2141,   2143,   2153,  2161,  2179,  2203,  2207,  2213,
    2221,   2237,   2239,   2243,   2251,  2267,  2269,  2273,  2281,  2287,
    2293,   2297,   2309,   2311,   2333,  2339,  2341,  2347,  2351,  2357,
    2371,   2377,   2381,   2383,   2389,  2393,  2399,  2411,  2417,  2423,
    2437,   2441,   2447,   2459,   2467,  2473,  2477,  2503,  2521,  2531,
    2539,   2543,   2549,   2551,   2557,  2579,  2591,  2593,  2609,  2617,
    2621,   2633,   2647,   2657,   2659,  2663,  2671,  2677,  2683,  2687,
    2689,   2693,   2699,   2707,   2711,  2713,  2719,  2729,  2731,  2741,
    2749,   2753,   2767,   2777,   2789,  2791,  2797,  2801,  2803,  2819,
    2833,   2837,   2843,   2851,   2857,  2861,  2879,  2887,  2897,  2903,
    2909,   2917,   2927,   2939,   2953,  2957,  2963,  2969,  2971,  2999,
    3001,   3011,   3019,   3023,   3037,  3041,  3049,  3061,  3067,  3079,
    3083,   3089,   3109,   3119,   3121,  3137,  3163,  3167,  3169,  3181,
    3187,   3191,   3203,   3209,   3217,  3221,  3229,  3251,  3253,  3257,
    3259,   3271,   3299,   3301,   3307,  3313,  3319,  3323,  3329,  3331,
    3343,   3347,   3359,   3361,   3371,  3373,  3389,  3391,  3407,  3413,
    3433,   3449,   3457,   3461,   3463,  3467,  3469,  3491,  3499,  3511,
    3517,   3527,   3529,   3533,   3539,  3541,  3547,  3557,  3559,  3571,
    3581,   3583,   3593,   3607,   3613,  3617,  3623,  3631,  3637,  3643,
    3659,   3671,   3673,   3677,   3691,  3697,  3701,  3709,  3719,  3727,
    3733,   3739,   3761,   3767,   3769,  3779,  3793,  3797,  3803,  3821,
    3823,   3833,   3847,   3851,   3853,  3863,  3877,  3881,  3889,  3907,
    3911,   3917,   3919,   3923,   3929,  3931,  3943,  3947,  3967,  3989,
    4001,   4003,   4007,   4013,   4019,  4021,  4027,  4049,  4051,  4057,
    4073,   4079,   4091,   4093,   4099,  4111,  4127,  4129,  4133,  4139,
    4153,   4157,   4159,   4177,   4201,  4211,  4217,  4219,  4229,  4231,
    4241,   4243,   4253,   4259,   4261,  4271,  4273,  4283,  4289,  4297,
    4327,   4337,   4339,   4349,   4357,  4363,  4373,  4391,  4397,  4409,
    4421,   4423,   4441,   4447,   4451,  4457,  4463,  4481,  4483,  4493,
    4507,   4513,   4517,   4519,   4523,  4547,  4549,  4561,  4567,  4583,
    4591,   4597,   4603,   4621,   4637,  4639,  4643,  4649,  4651,  4657,
    4663,   4673,   4679,   4691,   4703,  4721,  4723,  4729,  4733,  4751,
    4759,   4783,   4787,   4789,   4793,  4799,  4801,  4813,  4817,  4831,
    4861,   4871,   4877,   4889,   4903,  4909,  4919,  4931,  4933,  4937,
    4943,   4951,   4957,   4967,   4969,  4973,  4987,  4993,  4999,  5003,
    5009,   5011,   5021,   5023,   5039,  5051,  5059,  5077,  5081,  5087,
    5099,   5101,   5107,   5113,   5119,  5147,  5153,  5167,  5171,  5179,
    5189,   5197,   5209,   5227,   5231,  5233,  5237,  5261,  5273,  5279,
    5281,   5297,   5303,   5309,   5323,  5333,  5347,  5351,  5381,  5387,
    5393,   5399,   5407,   5413,   5417,  5419,  5431,  5437,  5441,  5443,
    5449,   5471,   5477,   5479,   5483,  5501,  5503,  5507,  5519,  5521,
    5527,   5531,   5557,   5563,   5569,  5573,  5581,  5591,  5623,  5639,
    5641,   5647,   5651,   5653,   5657,  5659,  5669,  5683,  5689,  5693,
    5701,   5711,   5717,   5737,   5741,  5743,  5749,  5779,  5783,  5791,
    5801,   5807,   5813,   5821,   5827,  5839,  5843,  5849,  5851,  5857,
    5861,   5867,   5869,   5879,   5881,  5897,  5903,  5923,  5927,  5939,
    5953,   5981,   5987,   6007,   6011,  6029,  6037,  6043,  6047,  6053,
    6067,   6073,   6079,   6089,   6091,  6101,  6113,  6121,  6131,  6133,
    6143,   6151,   6163,   6173,   6197,  6199,  6203,  6211,  6217,  6221,
    6229,   6247,   6257,   6263,   6269,  6271,  6277,  6287,  6299,  6301,
    6311,   6317,   6323,   6329,   6337,  6343,  6353,  6359,  6361,  6367,
    6373,   6379,   6389,   6397,   6421,  6427,  6449,  6451,  6469,  6473,
    6481,   6491,   6521,   6529,   6547,  6551,  6553,  6563,  6569,  6571,
    6577,   6581,   6599,   6607,   6619,  6637,  6653,  6659,  6661,  6673,
    6679,   6689,   6691,   6701,   6703,  6709,  6719,  6733,  6737,  6761,
    6763,   6779,   6781,   6791,   6793,  6803,  6823,  6827,  6829,  6833,
    6841,   6857,   6863,   6869,   6871,  6883,  6899,  6907,  6911,  6917,
    6947,   6949,   6959,   6961,   6967,  6971,  6977,  6983,  6991,  6997,
    7001,   7013,   7019,   7027,   7039,  7043,  7057,  7069,  7079,  7103,
    7109,   7121,   7127,   7129,   7151,  7159,  7177,  7187,  7193,  7207,
    7211,   7213,   7219,   7229,   7237,  7243,  7247,  7253,  7283,  7297,
    7307,   7309,   7321,   7331,   7333,  7349,  7351,  7369,  7393,  7411,
    7417,   7433,   7451,   7457,   7459,  7477,  7481,  7487,  7489,  7499,
    7507,   7517,   7523,   7529,   7537,  7541,  7547,  7549,  7559,  7561,
    7573,   7577,   7583,   7589,   7591,  7603,  7607,  7621,  7639,  7643,
    7649,   7669,   7673,   7681,   7687,  7691,  7699,  7703,  7717,  7723,
    7727,   7741,   7753,   7757,   7759,  7789,  7793,  7817,  7823,  7829,
    7841,   7853,   7867,   7873,   7877,  7879,  7883,  7901,  7907,  7919 };

enum PrimeError
{
  PX_OVERFLOW
};

/*
 * class PrimeEx
 *
 * Purpose: Exception class for this component.
 */
class PrimeEx : public ExceptionBase
{
  public:
  PrimeEx( PrimeError err )
  {
      Error = err;
  }

  virtual void Explain( DiagOutput &diag );

  private:
  PrimeError Error;
};

/*
 * Explain()
 *
 * Purpose: Explain the exception cause.
 */
void PrimeEx::Explain(DiagOutput &diag)
{
  switch (Error)
  {
      case PX_OVERFLOW:
        diag.DisplayMsg("Prime : Overflow", DIAG_WARNING);
        break;
  }
}

/*
 * mulmod()
 *
 * Return (x*y)%z
 *
 * Note: Investigate if there would be more efficient way to implement the
 *       function on 64 bits platform.
 */
inline unsigned mulmod( unsigned x, unsigned y, unsigned z )
{
#ifdef _MSC_VER
#pragma warning( disable : 4035 )
  __asm
  {
     mov eax, x
     mul y
     div z
     mov eax, edx
  }
#else
#ifdef __GNUG__
  unsigned result;
  asm("movl %1, %%eax;"
      "mull %2;"
      "divl %3;"
      "movl %%edx, %%eax;"
      : "=a" (result)
      : "m" (x), "m" (y), "m" (z)
      : "edx"
     );
  return result;
#else
  x = x%z;
  y = y%z;
  unsigned lxy, hxy = 0;
  unsigned lx,ly,hx,hy;

  hx = x >> 16;
  hy = y >> 16;
  
  if( !hx && !hy )
  {
      lxy = x*y;
  }
  else
  {
    unsigned c;
    lx = x & 0x0000ffff;
    ly = y & 0x0000ffff;

    c = lx*ly;
    lxy = c & 0x0000ffff;
    c = (c>>16) + ly*hx;
    hxy = c>>16;
    c = (c & 0x0000ffff) + hy*lx;
    lxy |= ((c & 0x0000ffff)<<16);
    hxy += (c>>16) + hy*hx;
  }

  while(hxy--)
  {
      unsigned tmp = 0xffffffff;
      lxy %= z;
      tmp -= (z - 1);
      lxy += tmp;
  }

  return lxy%z;
#endif
#endif
}
#ifdef _MSC_VER
#pragma warning( default : 4035 )
#endif
/******************************************************************************
 *
 * Name      : modexpo
 *
 * Purpose   : Compute a^b MOD m for b >= 0
 *
 * Note      : Can produce an overflow if the platform id not x86.
 *
 * Reference : D. M. Bressoud, Factorization and Primality Testing,
 *             Undergraduate Texts in Mathematics, Springer-Verlag,
 *             New York, 1989 (QA161.F3B73, ISBN 3-540-97040-1).
 *             Algorithm 3.3 p.34
 *
 ****************************************************************************/
unsigned modexpo( unsigned a, unsigned b, unsigned m )
{
    unsigned n = 1;

    /*
     * We find the binary representation of b while at the same time
     * computing successive squares of a. The variable n records the product
     * of the powers of a.
     */
    while( b > 0 )
    {
        if( b & 1 )
        {
            n = mulmod( n, a, m );
        }

        b >>= 1;
        a = mulmod( a, a, m );
    }
    return n;
}

/******************************************************************************
 *
 * Name      : b_SPRP
 *
 * Purpose   : Strong Probable Prime test to the base b
 *
 * Note      : Can produce an overflow if the platform id not x86.
 *
 * Reference : D. M. Bressoud, Factorization and Primality Testing,
 *             Undergraduate Texts in Mathematics, Springer-Verlag,
 *             New York, 1989 (QA161.F3B73, ISBN 3-540-97040-1).
 *             Algorithm 6.1 p.77
 *
 ****************************************************************************/
bool b_SPRP( unsigned n, unsigned b )
{
    unsigned t = n - 1;
    unsigned nMinus1 = t;
    unsigned a = 0;

    /*
     * Find t and a satisfying: n-1=2^a * t, t odd
     */
    while( !(t & 1) )
    {
        t >>= 1;
        a++;
    }

    /*
     * We check the congruence class of b^((2^i)t) % n for each i
     * from 0 to a - 1. If any one is correct, then n passes.
     * Otherwise, n fails.
     */
    unsigned test = modexpo(b, t, n);
    if( test == 1 || test == nMinus1 ) return true;

    while( --a )
    {
        test = mulmod(test, test, n);
        if( test == nMinus1 ) return true;
    }
    return false;
}

/******************************************************************************
 *
 * Name      : trialDivision
 *
 * Purpose   : Perform the tial division test on n on the maxIdx (must be < 1000)
 *             firts prime numbers of the prime numbers table.
 *
 * Return value : true if n pass the test.
 *
 ****************************************************************************/
bool trialDivision( unsigned n, int maxIdx )
{
    unsigned *p = primeTab + maxIdx;
    maxIdx = -maxIdx;

    while( ++maxIdx )
    {
        if( !(n % p[maxIdx]) )
        {
            return false;
        }
    }
    return true;
}

/******************************************************************************
 *
 * Name      : findUpperIdx
 *
 * Purpose   : Find the index of the first prime number in the table > than n
 *
 ****************************************************************************/
static unsigned findUpperIdx( unsigned n, unsigned bottom, unsigned top )
{
    unsigned middle;

    while( top > bottom )
    {
        middle = (top + bottom)>>1;

        if( n >= primeTab[middle] )
        {
            bottom = middle + 1;
        }
        else
        {
            top    = middle;
        }
    }
    return middle;
}

/******************************************************************************
 *
 * Name      : findUpperPrime
 *
 * Purpose   : Find the first prime number > than n. Useful to determine
 *             a good bucket number in a hash table.
 *
 ****************************************************************************/
unsigned findUpperPrime( unsigned n )
{
    unsigned result;

    if( n < 7919u )
    {
        result = primeTab[findUpperIdx(n, 0, 999)];
    }
    else if( n < 55000u )
    {
        if( !(n & 1) )
        {
            n++;
        }

        unsigned idx = findUpperIdx((unsigned)(sqrt((double)n)+1), 0, 59) + 1;

        for(;;)
        {
            n += 2;

            if( trialDivision( n, idx ) )
            {
                result = n;
                break;
            }
        }
    }
    else
    {
        if( !(n & 1) )
        {
            n++;
        }

        for(;;)
        {
            n += 2;

            if( n == 3215031751u ) continue;

            if( trialDivision( n, 10 ) )
            {
                if( b_SPRP(n, 2) && b_SPRP(n, 3) )
                {
                    if( n < 1373653u )
                    {
                        result = n;
                        break;
                    }
                    if( b_SPRP(n, 5) )
                    {
                        if( n < 25326001u )
                        {
                            result = n;
                            break;
                        }
                        if( b_SPRP(n, 7) )
                        {
                            result = n;
                            break;
                        }
                    }
                }
            }
        }
    }
    return result;
}

Home :: Fractals :: Tutorials :: Books :: Archive :: My blog :: My LinkedIn Profile :: Contact